The
ELECTRIFICATION
of the
MEXICAN RAILWAY

GENERAL ELECTRIC
The
ELECTRIFICATION
of the
MEXICAN RAILWAY

GENERAL ELECTRIC COMPANY
SCHENECTADY, N. Y.

February, 1928
Electrification of the Mexican Railway

One of the most interesting electrifications ever undertaken is that of the Mexican Railway Company, Ltd., on the single-track line between Mexico City and Vera Cruz. This line, which is 264 miles in length, exclusive of branch lines, was, at the time of its construction, one of the most difficult engineering problems ever encountered. At its maximum elevation, the road reaches a height of 8323 feet above sea level. It is significant that the 30-mile section between Esperanza and Orizaba was chosen for the initial electrification. This is by far the most difficult section because of heavy curvatures and grades reaching 4.7 per cent ruling and 5.25 per cent maximum.

This section of the road, locally called the Maltrata Incline, traverses a remarkably scenic country under the shadow of Orizaba Peak, one of the several extinct volcanoes in the immediate vicinity.
vicinity which range in height from 17,000 to 18,000 feet.

After the success of the original installation had been demonstrated, the electrification was extended to Paso del Macho, making a total distance of 70 miles.

The most recent type of steam locomotive replaced by electric locomotives weighs 150 tons and was designed especially for this division. It is known as the Fairlie type, and is an oil-burner. These engines are double-ended and have a three-axle driving truck at each end, with all the weight on the drivers.

The original motive-power equipment for electrification includes ten 150-ton, 3000-volt, d-c. locomotives, used for both freight and passenger duty. Because of the severe grades and heavy curvatures, ranging from 12 to nearly 16 degrees, the speed of both passenger and freight trains is limited.
In the substitution of electric locomotives for steam, there were several unusual conditions. First, the steam engines replaced have practically the same weight as the electric locomotives now in use; second, they have all the weight on the drivers; and third, they operate equally well in either direction. Nevertheless, in making the substitution, ten electric units have replaced 23 steam locomotives.

The two principal reasons for the greater capacity of the electric locomotives are the greatly increased speed in service on grades, and the higher percentage of availability. Whereas electric locomotives are available approximately 90 per cent of the time, the steam locomotives would ordinarily be available only about 30 per cent of the time. It has further been found that one electric locomotive can handle the normal passenger trains of eight cars on grades, whereas two steam locomotives were formerly used. This is due partly to the lack of steaming capacity on the long grades for the continuous pull, and partly to the faster schedule for passen-
of from four hours to two hours and 25 minutes, or an increase from 7.3 to 12.1 miles per hour.

While it was not expected that much improvement in speed would be shown on the down-hill run, as a matter of fact, the running time of most of the trains has been reduced. This is due to the elimination of stops for fuel and water and for cooling wheels and brake shoes. It will be appreciated that the schedule speeds, mentioned heretofore, require actual running speeds, not including stops, approximately double that of steam.

Substations

Two substations, one at Maltrata and the other at Portrero, furnish power to the lines. The original 30 miles were fed from the substation at Maltrata. This substation contains two 3000-kilowatt synchronous motor-generator sets with necessary transformers and switching equipment. The second substation, at Portrero, is a duplicate of the one at Maltrata except that it contains two 1500-kilowatt synchronous motor-generator sets. The total substation capacity for the electric zone is thus 9000 kilowatts.

Locomotives

There are ten 150-ton, 3000-volt locomotives on this road, which replaced 23 steam locomotives ranging in weight from 110 to 150 tons. The mechanical and electrical features of these locomotives are as follows:
ELECTRICAL DATA
Nominal voltage of system...........3000 v. d-c
Tractive eff., 1 hr. blown (3000 v.)....54,000 lb.
Speed at 1 hr. rating, full field........19 m.p.h.
Total horsepower, 1 hr.2736
Tractive eff., cont. 3000 v., full field..48,500
Speed at continuous rating, 3000 v. ...19.5 m.p.h.
Total horsepower, continuous2520
Number of motors6
Type of motorsGE-278-A-1500/3000 v.
Gear ratio90/18-5.00
Tractive eff. at 30% tract. coef.92,700 lb.

MECHANICAL DATA
Track gauge4 ft. 8 1/2 in.
Wheel arrangement04440
Diameter of drivers46 inches
Number of driving axles6

Passenger Train Hauled by Two Double-ended Steam Locomotives up 4 1/2 per cent Grade North of LaBota

The six motors, with which each locomotive is equipped, are of the box-frame, twin-gearered, commutating-pole, railway type with forced ventilation. They are designed to operate two in series on a 3000-volt circuit, or 1500 volts per commutator. The windings are therefore insulated for 3000 volts to ground. An 18-tooth steel pinion is mounted on each end of the armature shaft, and these mesh with 90-tooth cushion-type gears on the axle.

An unusual feature of the design of this locomotive is the provision for removing the motor, wheels, or axle from any of the trucks without removing the cab. By disconnecting the motor leads and jacking up the motor and the side frames, the wheels and axle and finally the motor can be lowered into a pit.

Weights
Total wheel base40 ft. 6 in.
Max. rigid wheel base9 ft. 2 in.
Width overall10 ft. 1 1/2 in.
Height over trolley locked down ..15 ft. 2 in.
Length inside knuckles52 ft. 11 in.

Total weight on drivers309,000 lb.
Dead weight per axle12,150 lb.
Elec. and air brake equipment ..135,000 lb.
Mechanical equipment174,000 lb.

Each locomotive is of the twin-gearered, articulated-truck type. A single cab is mounted on two equalizer frames which, in turn, are carried upon three two-axle articulated trucks. A motor is geared directly to each axle with twin, cushion-type gears.
The power for the operation of the auxiliaries is provided by a 3000/1500-volt dynamotor which carries a 4-kilowatt, 65-volt control generator mounted on a shaft extension. The two blower motors and the two compressor motors are normally operated in series across the 3000-volt supply using the mid-point of the dynamotor for equalization. This scheme allows the operation of the compressors and blowers directly from the trolley in case of failure of the dynamotor, and of one compressor or blower in case of the failure of the other machine.

An exciter set, used for regeneration, is driven by a 1500-volt motor operated from the 1500-volt dynamotor bus. If it is not necessary to operate the blowers at maximum capacity, they can also be operated on the 1500-volt circuit by connecting them in series.

The control generator supplies current at 65 volts for lights, headlights, foot-warmers, and control circuits, and for charging the storage battery.

View of Maltrata and Grade Section with Orizaba Peak in Background
GENERAL ELECTRIC COMPANY

SCHENECTADY, N. Y.

Sales Offices—Address nearest Office

Akron, Ohio 150 South Main Street
Atlanta, Ga. 187 Spring Street, N. W.
Baltimore, Md. 29 West Lexington Street
Birmingham, Ala. 602 North Eighteenth Street
Boston, Mass. 104 Federal Street
Boston, Mass. 54 State Street
Buffalo, N. Y. 39 East Genesee Street
Burlington, P. O. 40 East Broadway
Canton, Ohio 700 Tuscarawas Street, West
Charlestown, Va. 301 Capitol Street
Charlotte, N. C. 200 South Tryon Street
Chattanooga, Tenn 336 Market Street
Chicago, Il. 239 South Clark Street
Cincinnati, Ohio 215 West Third Street
Cleveland 625 Euclid Avenue
Columbus, Ohio 17 South High Street
Dallas, Tex. 1801 North Lamar Street
Dayton, Ohio 211 North Main Street
Detroit, Mich. 225 West Fort Street
Detroit, Mich. 416 West Sixth Avenue
Duluth, Minn. 14 West Superior Street
Elmira, N. Y. 342 East Water Street
Erie, Pa. 10 East Twelfth Street
Fort Wayne, Ind. 1630 Broadway
Grand Rapids, Mich. 201 Monroe Avenue
Hartford, Conn. 18 Asylum Street
Honesdale, Pa. 1016 Walker Avenue
Indianapolis, Ind. 108 North Illinois Street
Jacksonville, Fla 212 Michigan Avenue, West
Jacksonville, Fla 109 South Fourth Street
Kansas City, Mo. 1004 Baltimore Avenue
Knoxville, Tenn. 62 South Gay Street
Little Rock, Ark. 223 West Second Street
Los Angeles, Calif. 5201 Seventh Avenue
Louisville, Ky. 450 South Fourth Street

Canada: Canadian General Electric Company, Ltd., Toronto Motor Dealers and Lamp Agencies in all large cities and towns.

SERVICESHOPS

Atlanta, Ga. 400 Glenn St. S. W.
Baltimore, Md. 318 Urban Street
Chicago, Ill. 609 East Illinois Street
Cleveland, Ohio 1133 East 119th Street
Dallas, Tex. 1801 North Lamar Street
Detroit, Mich. 700 Antoinette Street
Los Angeles, Calif. 5001 Santa Fe Avenue
Memphis, Tenn. 130 Madison Avenue
Minneapolis, Minn. 423 East Water Street
Minneapolis, Minn. 107 South Fifth Street
Nashville, Tenn. 234 Third Avenue, North
Newark, N. J. 30 Washington Place
New Haven, Conn. 129 Church Street
New Orleans, La. 637 Gravier Street
New York, N. Y. 120 Broadway
New York, N. Y. 301 Falls Street
Oklahoma City, Okla. 10th North Robinson
Omaha, Neb. 409 South Seventeenth Street
Philadelphia, Pa. 1121 Walnut Street
Phoenix, Ariz. 11 West Jefferson Street
Pittsburgh, Pa. 320 Washington Street
Portland, Ore. 329 Alder Street
Providence, R. I. 76 Westminster Street
Richmond, Va. 93 Ninth Avenue
Rockford, Ill. 601 Navarro Street
San Antonio, Tex. 116 New Montgomery Street
Schenectady, N. Y. 1 River Road
Seattle, Wash. 811 First Avenue
Spokane, Wash. 431 Riverside Avenue
Springfield, Mass. 1387 Main Street
Tacoma, Wash. 950 Pacific Avenue
Tampa, Fla. 104 South Fourth Street
Trenton, N. J. 107 Wabash Avenue
Toledo, Ohio 630 Madison Avenue
Tulsa, Okla. 409 South Boston Street
Utica, N. Y. 205 Genesee Street
Washington, D. C. 1400 15th Street
Waterbury, Conn. 196 Grand Street
Worcester, Mass. 340 Main Street
Youngstown, Ohio 16 Central Square

Hawaiʻi: W. A. Ramay, Ltd., Honolulu Motor Dealers and Lamp Agencies in all large cities and towns.

BROADCASTING STATIONS

WGQ, Schenectady, N. Y. EOA, Denver, Colo. KGO, Oakland, Calif. Distributors for the General Electric Company outside of the United States and Canada

INTERNATIONAL GENERAL ELECTRIC COMPANY, INC.

New York City, 120 Broadway General Sales Offices, Schenectady, N. Y.

FOREIGN OFFICES, ASSOCIATED COMPANIES AND AGENTS

ARGENTINA: General Electric, S. A., Buenos Aires, Cordoba, Rosario de Santa Fe, and Tucuman
AUSTRALIA: Australian General Electric Company, Ltd., Melbourne, Adelaide, Brisbane, and Newcastle
BELGIUM AND COLONIES: Société d'Electricité et de Mécanique (Proceeds Thomson-Houston & Carlin)
BOURBON: Bonaire, Bonaire; Bonaire; Bonaire, Bonaire; Bonaire, Bonaire
BRAZIL: General Electric, S. A., Rio de Janeiro, Sao Paulo, Bahia, and Porto Alegre
CHINA: International Machinery Company, Santiago, Antofagasta and Valparaiso; Nitrate Agencies, Ltd., Iquique
COLOMBIA: International General Electric, S. A., Bogota, Barranquilla, and Medellin
CUBA: General Electric Company of Cuba, Havana, and Santiago de Cuba
DUTCH EAST INDIES: International General Electric Company, Inc., Surabaya, Java
ECUADOR: Guayaquil Agencies Co., Guayaquil
EGYPT: British Thomson-Houston Company, Ltd., Cairo
FRANCE: Companie Des Lamps, Paris
GERMANY: H. B. Fierce, Representative, General Electric Co., Berlin
BRITISH THOMSON-HUOSON, Ltd., Rugby
GREECE AND COLONIES: Compagnie Generale Thomson-Houston, Paris, France
HOLLAND: Mijnzien & Co., Amsterdam
INDIA: International General Electric Company, Inc., Calcutta, Bombay, and Bangalore
ITALY AND COLONIES: Compagnia Generale 16 Electriche
JAPAN: Shibaura Engineering Works, Tokyo; Tokyo Electric Company, Ltd., Kawasaki, Kanagawa-Ken; International
KOREA: International Electric Co., Inc., Tokyo and Osaka
JAVA: International General Electric Co., Ino, Surabaya
MEXICO: General Electric, S. A., City of Mexico, Guadalajara, Monterrey, Tampico, Vera Cruz, and El Paso, Texas
NEW ZEALAND: National Electrical and Engineering Company, Ltd., Auckland, Dunedin, Christchurch, and Wellington
PARAGUAY: General Electric, S. A., Buenos Aires, Argentina
PERU: Grande y Comp. Lima
PHILIPPINE ISLANDS: Pacific Commercial Company, Manila
PORTUGAL AND COLONIES: Sociedade Iberica de Construções Electricas Lda., Lisbon
SOUTH AFRICA: South African General Electric Company, Ltd., Johannesburg, Cape Town, and Durban
SWITZERLAND: Trolli Fries, Geneva
TURKEY: General Electric, S. A., Montevideo
VENEZUELA: General Electric, S. A., Caracas